\qquad Date \qquad Block \qquad

Exponential Functions - Practice

1. If a basketball is bounced from a height of 15 feet, the function $f(x)=15(0.75)^{x}$ gives the height of the ball in feet of each bounce, where x is the bounce number. What will be the height of the5th bounce? Round to the nearest tenth of a foot.

Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer.
2. $\{(2,4),(4,8),(6,16),(8,32)\}$

\qquad
3. $\{(-2,5),(-1,10),(0,15),(1,20)\}$

4. $\{(1,750),(2,150),(3,30),(4,6)\}$

5. $\{(0,1),(5,3),(10,9),(15,27)\}$

\qquad Date \qquad
\qquad

Exponential Functions - Practice

6. In the year 2000, the population of Virginia was about 7,400,000. Between the years 2000 and 2004, the population in Virginia grew at a rate of 5.4%. At this growth rate, the function, $f(x)=$ $7,400,000(1.054)^{x}$ gives the population x years after 2000. In what year will the population reach $15,000,000$?
7. The function $f(x)=2300(0.995)^{x}$ models enrollment in high school.
a. What is the initial value?
b. What is the base?
c. Is the population in the high school increasing or decreasing? How do you know?
8. The function $\mathrm{f}(\mathrm{x})=550(1.025)^{\mathrm{x}}$, models the population of rabbits.
a. What was the starting population of rabbits?
b. Is the population increasing or decreasing? How do you know?
c. What is the population of rabbits after 5 years?
9. The function $\mathrm{f}(\mathrm{x})=6(1.5)^{\mathrm{x}}$, models the length of a photograph in inches after the photo has been enlarged.
a. What is the starting length of the photograph? Be sure to include units.
b. How many times has it been enlarged if the length of the side is 20.25 ?
10. The function $\mathrm{f}(\mathrm{x})=75(1.2)^{\mathrm{x}}$, models the number of rainbow trout in a lake.
a. What is the starting population of trout?
b. Is the population increasing or decreasing? How do you know?
c. What is the population of trout after 10 years?
